

En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement le présent ouvrage sans autorisation de l'éditeur.

© Éditions L'Œil d'Or et Jean-Luc André d'Asciano, 2020.

118 rue Jean-Pierre-Timbaud – 75011 Paris www.loeildor.com / www.loeildorenligne.com

ISBN: 978-2-490437-03-0

CONTENTS

INTRODUCTION	
Across Waterways	11
Ayda Alehashemi, Jean-François Coulais, Gilles Hubert, editors	
CHAPTER 1 IRANIAN WATER CIVILISATION	14
Imposed Modern Misdevelopment vs. Composed Traditional Âbâdi	17
Mohammad Reza Owlia, Farzane Owlia	
An Introduction to Qanats of Yazd Province	23
Ali Asghar Semsar Yazdi, Saleh Semsar Yazdi	
The Influence of the Underground Water System on the Urban	
Morphology of a Traditional City, Yazd-Iran	31
Mohammad Reza Noghsan Mohammadi	
The Relationship Between Qanat Watermills and Settlements in the Central	
Plateau of Iran	39
Mohsen Abbasi Harofteh, Nariman Farahza	
Water and Cultural Landscape	47
Majid Labbaf Khaneiki	
CHAPTER 2 LEARNING FROM HISTORY	60
In Praise of Water Architecture	63
André Guillerme	
Urban Resilience and Hydraulic Continuity Against a Backdrop of Wars and	
Conquests, the Susiana Plain of Iran in the First Millennium CE	69
Mehrnoush Soroush	
Water in the Casbah of Algiers	83
Dalila Khamache	
Water in The Persian Garden Paradise: The Case of Isfahan	97
Sina Abedi	
Relevance of Historical Water Systems in Today's Cities, Indian Examples	111
Savitri Jalais	
Typical Human Settlements, Cities and Related Ancestral Hydraulic Systems: A	
Comparative Approach Through Examples from The Mena Region and Europe	117
Fairouz Megdiche-Kharrat, Mohamed Moussa, Rachid Ragala	
CHAPTER 3 WATER ARCHITECTURE AND URBAN PLANNING	128
"Deh-Sabz", Afghanistan: an Urban Project to Optimize the Presence of Water	
in the City	131
Christian Piel	

Toward Blue-Green Plan in Taleghan City	141
Ali Chavoshian, Naser Dehghanian, Reza Dowlati Fard, Pierre Renault	
Social Sustainability Through Water Related Architecture	147
Ghazal Banan	
CHAPTER 4 WATER ARCHITECTURE AND LANDSCAPE	
EXPERIENCES: EUROPEAN APPROACHES	154
The Qanats in The Palermo Plain (Sicily, Italy)	157
Pietro Todaro	
The Signs of Water	173
Manfredi Leone, Paolo Inglese, Tiziana Turco, Martina Botta, Claudia Urso	
The Place of Water in Urban Projects Two European Examples	185
Gilles Hubert	
Building Landscape and Organising Territory: (Re) Thinking Pontine	
Marshes` Architecture	199
Cristina Pallini, Helder Casal Ribeiro	
Recomposing Urban and Regional Territories through Water Management	211
Andreea Grigorovschi, Frédéric Rossano	
Dams and Landscapes: A Case Study on The Changing Perception of The	
Sélune Valley	225
Hélène Balaresque, Marie-Anne Germaine, Ludovic Drapier, Laurent Lespez	
CHAPTER 5 HERITAGE AND INNOVATION	236
A Paradigm Shift in Urban River Management in Iran: Tehran River	
Restoration	239
Ali Chavoshian, Saied Ahmari, Fatemeh Fallah Zavareh, Naser Dehghanian	
Kan River Restoration Plan, Tehran	247
Pierre Renault	
Water Infrastructures and Urban Structures in Iran: Rethinking	
Multidimensional Integration	259
Ayda Alehashemi	
Restoring Blue and Green Corridors in European and Asian Metropolises: The	
"Confluence-City" Concept As Theoretical and Practical Tool	271
Cristiana Mazzoni	
Research on Water Architecture: from Legacies to Innovation	285
Jean-Francois Coulais	
AUTHORS	299
BIBLIOGRAPHY	305

TYPICAL HUMAN SETTLEMENTS, CITIES AND RELATED ANCESTRAL HYDRAULIC SYSTEMS: A COMPARATIVE APPROACH THROUGH EXAMPLES FROM THE MENA REGION AND EUROPE

Fairouz Megdiche-Kharrat Mohamed Moussa Rachid Ragala

Introduction

In arid and semi-arid ecosystems, sedentism and the emergence of cities were first made possible due to water ancestral techniques and practices that defied the scarcity of the resource and insured its availability over time. These are typical hydraulic systems commonly encountered in the MENA region (Middle East and North Africa) and in some European countries were they are still operational, in most cases. It appears that these systems build and animate human and non-human lives in countries as diverse as Iran, Oman, Tunisia, Algeria, Morocco, Spain and Switzerland where they present a rich and diverse terminology, respectively, *qanat*, *falaj*, *mkoula*, *foggara*, *khettara*, *galeria* and *bisse*.

Mechanism of the Systems

These ancestral systems provide water to communities of users by means of underground drainage of aquifers or by channeling water from neighborhood wadis, torrents or springs. A typical qanat has a tunnel that goes under the ground, at depths that vary from one system to the other depending mainly from the topography and watertable's depth, from the first surface emergence until it reaches the aquifer. Series of shafts are visible on the ground surface, they allow the access to tunnels and provide air for workers; and are used above all for spoil removal.

All adopted water acquisition procedures, as shown in Fig. 1, relay on gravitational techniques which are in harmony with local water availability. Their management works through organized distribution scales that serve local beneficiaries and large communities of users.

Origin of the Systems

P. W. English¹ asserts that *qanat* technology was first adopted in the high plateaus of Western and Eastern Iran and in Northern Iraq, about 2,500 years ago. H. Goblot confirms also this hypothesis and mentions precisely "Urartu", about 800 to 600 BC, as the origin of *qanat* technology; he asserts that it was exported to other regions, toward the West, through Islamic conquests and Arabic expansion, then by the discovery of the new world, and toward the East through the silk road². But P. M. Costa³ believes that the technique was invented in Southern Arabia, specifically Oman, where they took advantage from their expertise in cooper mining in the middle of the third millennium BC. However, other scientists, based on some historical systems dating in various regions else than the Middle-East, suggest the hypothesis that this technology was developed simultaneously and independently as a mean of local environments adaptation⁴. However, the oldest evidence of the existence of *qanats* consist of the 430 lines tablet illustrating the eightieth military campaign of Sargon II, the king of Assyria, against the Urartu Kingdom in Northwestern Iran in 714 BC5. Qanats are mentioned in the tablet's text which describes, among others, the itinerary of the king leading his army and the geographical contexts and the cities he passed through, such as "Ulhu"6. According to this report, it was a city situated at the foothill of a mountainin a dry region which became prosperous due to irrigation. Indeed, the lines 199 to 210 describe the city of "Ulhu" and mention that their Urartu king "Ursa" had made the water gush out by digging a canal conveying the flowing water thus irrigating farmlands in all seasons; the text describes the hydraulic works (canal, gorges in large number, dikes, dams or reservoirs, etc.) and the types

of crops (fruits, grapes, cereals, grasslands and pastures, etc.) ⁷. This depiction corresponds perfectly to the city of Marand, in Northeastern Iran, described by travelers like Tavernier, Chardin and Henri Binder as an oasis implemented by a network of watercourses that bring water from the mountain⁸.

The Scope of the Study

This research presents these ancestral hydraulic systems in different geographical contexts and highlights their implication in the genesis of specific anthropogenic landscapes that vary from green spaces and agricultural areas to domestic habitat and urban infrastructure. This research intend to explore those landscapes in various regions through a spatial comparative approach.